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Probability distributions 
Probability distributions are important for working with random variables. Examples of random 
variables are: 

o the number of ponds where we detect frogs, 
o the number of muntjac we see during a survey, 
o the weight of a randomly selected squirrel. 

The result is not the same in every experiment, but if we repeat the experiment many times we can 
investigate the distribution of the result, and select a suitable model and parameter values to describe 
the population. 
Here we will review three of the most useful probability distributions: the binomial and Poisson 
distributions for count data, and the normal or Gaussian distribution for continuous measurements. 

Binomial distribution 
The binomial distribution applies to a series of identical, independent trials, each with only two 
possible outcomes (the “bi” in binomial indicates “two”). In wildlife biology the outcomes might be 
presence/absence, occupied/unoccupied, detected/not detected, captured/not captured, survived/died, 
etc. 
For example, we go to 10 ponds and listen for the calls of a certain species of frog. We record the 
number of ponds where we hear frogs. The result will be a number between 0 and 10. 
The data are nonnegative integers (whole numbers), with a known upper limit. We usually need to 
estimate the probability of success in each trial. 
The binomial distribution gives the probability of obtaining x successes in n independent trials with the 
same probability of success (p) in each trial. We can use it to calculate the probability of detecting 
frogs at 0, 1, 2, …, 10 out of 10 ponds when the detection probability at each pond is 0.75. The table 
and graph are given below: 
 

x = no. of ponds where 
frogs detected 

Probability of detecting 
frogs at x ponds given 

p(detect) = 0.75 
0 0.00000 
1 0.00003 
2 0.00039 
3 0.00309 
4 0.01622 
5 0.05840 
6 0.14600 
7 0.25028 
8 0.28157 
9 0.18771 
10 0.05631 

The table was done in Excel using BINOMDIST(A…, 10, 0.75, FALSE) and the bar graph was in R 
using dbinom(0:10, 10, 0.75). 
The formula for the binomial distribution is: 
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(‘n!’ is ‘n factorial’, the product of n and all the integers less than n; so 5! = 5 x 4 x 3 x 2 x 1 = 120.) 
The Expected Value (the mean of a very large number of experiments) is E(X) = np and the variance 
var(X) or 2 = np(1 – p). 

Cumulative probability distribution 
It’s often useful to know the probability of getting a certain number of successes or fewer: for 
example, we may want to know the probability of detecting frogs at up to 3 ponds if p(detect) = 0.75. 
We could calculate the value for 0, 1, 2 and 3 and add them up. But both Excel and R have ways of 
calculating the cumulative distribution. In Excel we use  BINOMDIST(A…, 10, 0.6, TRUE) and in R 
we use pbinom instead of dbinom. The results are shown below: 

 

x = no. of ponds 
where frogs detected 

Probability of detecting 
frogs at  x ponds 

given p(detect) = 0.75 
0 0.00000 
1 0.00003 
2 0.00042 
3 0.00351 
4 0.01973 
5 0.07813 
6 0.22412 
7 0.47441 
8 0.75597 
9 0.94369 

10 1.00000 

 

Poisson distribution 
The Poisson distribution is often used to model count data for populations that are randomly 
dispersed. For example, during surveys at Batang Ai we counted the following numbers of groups of 
muntjac at different sites where the survey effort was equal. 

Akup 5 
Bebiyong 2 
Bedegum 1 
Bratik 2 
Kapok 4 
Pantar 1 
Sebarik 4 
Teliting 0 

The counts are nonnegative integers (whole numbers) but, unlike the data for the binomial 
distribution, there is no upper limit to the number of groups of muntjac we might see. Large numbers 
just become less and less probable. We usually need to estimate the expected number of animals (λ, 
lambda) at each site from the data. 
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For the muntjac data above,  = 2.375, and the Poisson probability distribution for λ = 2.375 is shown 
below: 
 
No. of muntjac 
groups seen Probability 

0 0.093014 
1 0.220909 
2 0.26233 
3 0.207678 
4 0.123309 
5 0.058572 
6 0.023185 
7 0.007866 
8 0.002335 
9 0.000616 

>9 0.000186 
 
In Excel, we used POISSON(A…, 2.375, FALSE) to produce the table, and in R, dpois(0:8, 2.375) 
for the bar graph. 
The equation for the Poisson distribution is: 

 
where λ is the average number of muntjac per site. The expected value of x, E(x) = λ and variance of x 
is also equal to λ. 

Cumulative probability distribution 
We can also calculate and plot cumulative probabilities for Poisson distributed variables: 
 
No. of muntjac 
groups seen 

Cumulative 
probability 

0 0.093014 
1 0.313924 
2 0.576254 
3 0.783932 
4 0.90724 
5 0.965812 
6 0.988997 
7 0.996863 
8 0.999198 
9 0.999814 

Notice that the cumulative probability for x ≤ 9 is still < 1, but as x gets larger the cumulative 
probability gets closer and closer to 1. 

Continuous variables and probability density 
The binomial and Poisson distributions deal with discrete variables – integers or whole numbers – 
where it makes sense to talk about the probability of a specific observation, eg. the probability of 
hearing frogs at (exactly) 6 ponds out of 10. 
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This won’t work for continuous variables, such as the heights of people or the weights of squirrels. 
The probability that a squirrel will weight exactly 980g, that is 
980.00000000000000000000000000000000000000000000000000000000000000000000000000000g  
is very nearly zero. And it’s zero for any other exact value we might choose. But the probability that it 
falls in a given interval, say between 975 and 985, is not zero and we can calculate that using the 
concept of probability density. 
To simulate a continuous variable, think of a spinner (see diagram 
right) where you flick the arrow to make it spin and see where it 
stops, which may be anywhere between 0 and 10. 
Suppose we divide the circle into 10 sectors, as indicated by the 
tick marks. What’s the probability that the arrow will stop 
between 1 and 2? Assuming it’s fair, ie. all possible stopping 
positions are equally probable, this probability is 1/10 (10%). If 
we divide the circle into N equal sectors, the probability that the 
arrow will stop in a specified sector is 1/N; we can make N as big 
as we like and 1/N as small as we like. 
Now think about the ratio of probability to sector width. This is 
(1/N) / (10/N) = 0.1, and doesn’t change when we change N. This 
ratio is the probability density. (We sometimes refer to plain old probability as probability mass to 
distinguish it from probability density.) If we draw a graph of the probability density, it looks like this: 

The red line plots the probability density function 
(pdf). The grey rectangle represents the range 1 
to 2. The probability of a result in that range is: 
probability density x width of range = 0.1 x (2 – 1) = 
0.1 x 1 = 0.1 = 1/10. 
which is equal to the area of the grey rectangle. 
It’s a general rule that the probability that a result 
falls in a given range equals the area under the 
pdf curve for the relevant range. 

The total area under the red curve is just 0.1 x 10 = 1. In fact, the total area under a pdf curve = 1 
always, as the probability that the result is somewhere in the range from –∞ to +∞ is 1. 
Now think of a spinner marked out from 0 to 5 instead of 0 to 10, 
the probability that the arrow will stop between 1 and 2 is now 
1/5 (20%), although the sector width is still 2 – 1 = 1. 
Here the probability density = 0.2, instead of 0.1, over the range 
from 0 to 5; the probability of a result below 0 or above 5 is zero. 
And the area under the red curve is 1.

 
Next we’ll look at some more interesting pdf curves. 
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Normal or Gaussian distribution 
This is the ‘bell curve’ often used to model 
measurements such as the heights of people or the 
weights of squirrels. The spinner for a normal 
distribution with mean µ = 1000 and standard 
deviation σ = 145 is shown on the right. The scale 
actually goes from –∞ to +∞, though the 
probability of the spinner landing below 600 or 
above 1400 is tiny. 
The probability of a result between 1150 and 
1200g equals the area of the dark segment, which 
is 0.066 or 6.6%. 
Unfolding1

 
The total area under the curve from –∞ to +∞ is 1, as it must be. The dark area corresponds to weights 
between 1150 and 1200g. Its area = 0.066, ie. the probability that a squirrel picked at random weighs 
between 1150 and 1200g is 0.066 or 6.6%. 
It may be useful to know that the probability of a value lying within 1 SD of the mean (between 855 
and 1145g in our example) is 68% or about 2/3, and within 2×SD (810 to 1290g) it’s 95%. 
The equation for the normal pdf is: 

 the spinner produces the graph below, 
which is the usual plot of the normal probability density function (pdf), with mean µ = 1000g and 
standard deviation σ = 145g: 
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That looks horrible, but in practice we use the functions NORMDIST in Excel or dnorm in R. We are 
usually more interested in the area under the curve than the height of the curve, and we can get that 
with NORMDIST (setting cumulative to TRUE) or pnorm in R, which give the area under the curve to 
the left of the value entered.  

For example, in R, using pnorm(1200, 1000, 145)gives the probability that a randomly drawn 
squirrel will weigh less than 1200g, which is 0.916. Similarly pnorm(1150, 1000, 145)gives the 
probability that a randomly drawn squirrel will weigh less than 1150g, which is 0.850. So the 
probability that our squirrel weighs between 1150 and 1200g is 

                                                 
1 An mp4 video showing the unfolding is at http://mikemeredith.net/blog/1309_Normal_pdf_animation.htm 

Total area under 
curve  = 1 Area between 

1150 and 1200 
= 6.6% 



Probability distributions 
 

Page 6 

pnorm(1200, 1000, 145) - pnorm(1150, 1000, 145) 

 = 0.916 – 0.850 = 0.066. 

Points to recall 
o In biology we are often dealing with random variables. 
o We deal with randomness by modelling the variable as a probability distribution and 

estimating the parameters. 
o For discrete variables we use probability distributions such as the binomial or Poisson 

distribution. 
o With continuous variables, probability is only meaningful for a range of values (eg.  

1150 < x < 1200), so we use probability density functions such as the normal (Gaussian). 
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